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The influence of Antarctic subglacial volcanism
on the global iron cycle during the Last Glacial
Maximum
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Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during

the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters.

The principal source of this Fe is thought to be dust transported from southern mid-latitude

deserts. However, uncertainty exists over contributions to CO2 sequestration from

complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating

and interrogating suitable archives that have the potential to preserve such information. Here

we present petrographic, geochemical and microbial DNA evidence preserved in precisely

dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together

suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum

could have reached the Southern Ocean. Our results support a significant contribution of

Antarctic volcanism to subglacial transport and delivery of nutrients with implications on

ocean productivity at peak glacial conditions.
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73376 Le Bourget du Lac, France. 9 School of Environment, The University of Auckland, Private Bag, Auckland 92019, New Zealand. 10 European Synchrotron
Radiation Facility, 38000 Grenoble, France. Correspondence and requests for materials should be addressed to S.F. (email: silvia.frisia@newcastle.edu.au).

NATURE COMMUNICATIONS | 8:15425 | DOI: 10.1038/ncomms15425 | www.nature.com/naturecommunications 1

mailto:silvia.frisia@newcastle.edu.au
http://www.nature.com/naturecommunications


T
he amplitude of atmospheric CO2 change from glacial to
interglacial periods is difficult to explain by a single
mechanism, although during the last glacial maximum

(LGM) atmospheric CO2 concentration was largely regulated by
iron (Fe) fertilization and decreased vertical exchange of waters of
the Southern Ocean1. The correlation of dust-borne Fe flux with
phytoplankton productivity and atmospheric CO2 drawdown
during the LGM is clear1,2. However, fertilization experiments
indicated that Fe associated with dust particulates is of reduced
bioavailability when compared to that associated with organic
iron-complexing ligands3.

Subglacial environments are an important source of reactive Fe
in dissolved, particulate and organic iron-complexing ligand
forms prone to hydrological mobilization4. Today, subglacially
sourced Fe flux from the Antarctic Ice Sheet is estimated to be
higher than the labile Fe flux from dust, and travels hundreds of
kilometres offshore, thereby helping to sustain primary
productivity in the Southern Ocean4–7. Ice sheets contribute
potentially bioavailable Fe to the oceans via iceberg transport of
Fe (oxyhydr)oxide minerals8, as well as through meltwater
discharged from subglacial lake drainage7,9. During glacial
maxima, a similar, if not higher contribution from subglacial
drainage of meltwaters should be expected from the Antarctic Ice
Sheet because a reduced dissipation of elevated geothermal heat
due to ice-sheet thickening would favour basal ice melt10,11.
The region around the margins of the Ross Sea is characterized
by high geothermal heat fluxes associated with extensional
tectonics10,12 and local volcanism13. This is represented by a
suite of 24 tephra spanning in age from 15,370±150 to
670±7 years BP preserved in the Talos Dome ice core, 17 of
which are geochemically linked to volcanic eruptions in the
Mount Melbourne province in Northern Victoria Land (NVL)14.
Thus, the sector of NVL near the Ross Sea rift is ideal for
exploring whether or not volcanically influenced subglacial
processes contributed potentially bioavailable Fe to the
Southern Ocean in the past.

Evidence for LGM subglacial processes involved in Fe delivery
to the Southern Ocean from the Antarctic Ice Sheets has been
elusive until now. Datable material capable of recording the
chemical, microbial and hydrological signatures of subglacial
environments is required, and previous approaches that involved
drilling subglacial lakes and sediments suffered from a lack
of precise age control15. Subglacial carbonates found in Boggs
Valley (71�55’S; 161�31’E; elevation 1,160 m a.s.l., NVL), (Fig. 1)
provide the first radiometrically dated petrographic, geochemical
and genomic evidence of thermogenic, subglacial drainage events
that potentially delivered Fe and other nutrients to the ice margin
in the LGM. Boggs Valley is ideally located in an area that is
characterized by volcanic complexes, the ages of which span more
than 400 Ma16, in a region characterized by elevated geothermal
heat flux.

The presence of subglacial carbonates in an area confirms the
existence of steady liquid water production at the ice-bedrock
interface17,18. Variations in crystal morphology and chemistry
in successive growth layers record changes in hydrology,
solute concentration, particulate and microorganism load within
the basal fluid19. This environmental information can be placed
into an absolute chronologic framework because the carbonates
can be dated precisely with uranium-series methods20,21.
The Boggs Valley calcite data sets suggest a relatively important
(but as yet neglected) potential contribution of Antarctic
volcanism in inducing basal ice melting and sustaining
subglacial discharge at peak glacial conditions. Particulate and
solutes released via bio-weathering, in a subglacial aqueous
environment supporting microbial communities, could have
reached the ice margin and supplied potentially bioavailable

Fe to the Southern Ocean. This would explain some discrepancies
observed between dust-borne Fe fluxes and ocean productivity
in the LGM.
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Figure 1 | Boggs Valley location, sampling area and geomorphologic

context. (a) Map of Antarctica with location of Boggs Valley and other sites

mentioned in the text; Talos Dome is located circa 100 km south of the

sampling site. (b) Map created with ASTER GDEM data (by METI and

NASA), showing contours. These highlight that Boggs Valley connects the

Ice-Sheet plateau with the Alexandria Glacier, whose surface has a lower

elevation relative to the valley floor. The Alexandria merges with the

Rennick, one of the largest outlet glaciers in NVL. The open square marks

the area where subglacial calcite samples were collected from glacially

polished rock surfaces.
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Results
Ages and sedimentology. The U/Th ages of subglacial calcites are
expressed in thousands of years (ka) before the year 2000 (b2k).
Boggs Valley translucent columnar calcite sparite (Cs) crusts
yielded ages from 26.951±0.824 to 17.054±0.332 ka, and their
high U concentration (15–56 p.p.m., Supplementary Table 1)
suggests that they formed in anoxic/suboxic aqueous pools
in the presence of organic compounds22. The calcites occur
over an area of 1,000 m2 of ice-free metamorphic, non-carbonate
bedrock (Fig. 1). Their vicinity to moraines and their internal
stratigraphy (Fig. 2) are typical of subglacial calcareous deposits
found elsewhere and reflect changes in hydrology at the ice/rock
interface17,21.

Cs grew in anoxic/suboxic pockets kept filled by steady
production of basal ice meltwaters17. Dirty microsparite (Dm)
veils interrupt the growth of Cs and can be traced across samples.
Notably, a 1–2 mm thick Cs layer bounded by Dm in BV9a2a and
BV9b correlates with a Dm veil in BV9a2 and with sediment
consolidated by isopachous (phreatic) calcite cement (Cc) in
BV9a2c (Supplementary Fig. 1A). Stratigraphic principles suggest
these facies are genetically linked and record synchronous
episodes of injection of particulate-rich waters into the pockets
where clean sparite precipitated. The ages of the Cs bounded by
Dm (CsþDm facies in sample BV9a2a, Supplementary Table 1)
range from 25.135±0.537 ka to at least 23.524±0.446 ka

(Dm facies in sample BV9b, Supplementary Table 1). Isopachous
cements that indurated sediments consisting of rounded pebbles
and granules composed of rocks sourced from up-glacier and
deposited in bedrock furrows yielded ages from 22.528±0.661 to
20.891±0.996 ka (Cc fabrics in BV9a2c and BV9a1(i),
Supplementary Table 1). As Cc post-dated the deposition of
the sediment, it is reasonable to hypothesize that clast cementa-
tion eventuated after the precipitation of Dm in BV9b at
23.524±0.446 ka Dm. This suggests synchronous subglacial
transport of sediment with pebble-grain size in furrows and
particulate injection in basal depressions (Dm). Non-depositional
or dissolution gaps interrupting precipitation of Cs mixed with
Dm on bedrock protuberances must also be coeval with sediment
transport (Supplementary Fig. 1). Thin Dm layers intermittently
coat Cs from 21.113±0.283 (BV9a2) to 17.054±0.332 ka, but
there is no evidence for chronostratigraphic correlation with
indurated sediments (Supplementary Table 1).

Isotope and chemical properties. The stable isotope composition
of Boggs Valley calcites was measured along transects in BV9a2,
consisting of Cs, in BV9b, containing both Cs and Dm, and BV11,
exclusively formed of Dm. Overall, the d13CVPDB values average
� 8.0% (Supplementary Fig. 2) implying that the dissolved
inorganic carbon in the parent waters derived from microbial
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Figure 2 | Boggs Valley subglacial calcites petrography and elemental concentration. Sample BV9a2c is representative of deposits found in furrows

consisting of rounded clasts cemented by isopachous calcite rims (Cc), granules coated by micrite (Cg: coated grains) capped by columnar Cs. Synchrotron

micro XRF elemental maps for the area designated by a white box highlight that maximum concentration of S (as sulfate) is in the calcite matrix. Fe reaches

up to 22,000 p.p.m. (as determined by laser ablation (LA)-ICP-MS) in particulate, and it is likely present in the form of oxy-hydroxides when not associated

with Si-rich particles. The polished thick section of BV9b is typical of Boggs Valley calcites consisting predominantly of Cs, interrupted by thin layers of Dm,

as shown in the microstratigraphic log to the left. The elemental maps for the area designated by a white box show S concentration increasing toward the

contact with the overlying Dm. Mn distribution is similar to S and can be interpreted as reflecting a common source or an increase in temperature, as Mn

incorporation in calcite is temperature dependent59. In the clean Cs, Fe concentration is below 200 p.p.m., with Fe distribution appearing blue on the colour

scale. Note that S and Mn concentration distributions follow crystal terminations, providing robust evidence for preservation of environmental signals in

Boggs Valley calcites. Scale bar for both BV9a2c and BV9b polished sections is 5 mm. In all maps, elements are reported in normalized counts ranging from

high (red) to low (blue) relative concentration according to the 0–100% scale bar.
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metabolism23 or from subglacial oxidation of organic matter19.
The d18OVPDB values average � 30.3% in Dm and � 28.5% in
Cs (Supplementary Fig. 2). These values are similar to those of
carbonates precipitated from Antarctic meltwaters24.

Facies CsþDm formed from 25.135±0.537 to 23.524±0.446
ka are characterized by high sulfur, Fe and manganese
concentrations (Fig. 2) and enclose calcium fluoride spherules
(Supplementary Fig. 3). Fe, at up to 22,000 p.p.m., is present in its
ferric form as (oxyhydr)oxide, most likely ferrihydrite and
goethite, associated with particulates (Fig. 2; Supplementary
Fig. 4a). Divalent Fe identified by mXANES peaks at 7,126 and
7,130 eV is more common in Cs, where elemental Fe detected by
inductively coupled plasma mass spectrometer (ICP-MS) reaches
concentrations of B100 p.p.m. Sulfur mostly occurs as sulfate
(Supplementary Fig. 4b) with concentration up to 3,000 to
5,300 p.p.m. Amino-acid sulfonate was also revealed by mXANES
(Supplementary Fig. 4b), suggesting a microbial contribution to
the subglacial S pool25. Negative-carbon isotope ratio values and
sulfonate are consistent with the hypothesis of a subglacial
microbial community whose metabolic activity involved organic
matter and sulfide oxidation. This is corroborated by ancient
DNA sequencing of the subglacial calcites.

Microorganism associations. Ancient DNA was extracted from
calcite Cs and Dm layers under strict ancient DNA protocols. The
compact nature of the fabrics ensures that the system was not

contaminated by organic compounds or microbes more recent
than the LGM. A total of 189 sequences were 497% similar to
sequences of known taxa, with the highest proportion in Cs layers
pre-dating 21.047±0.521 ka in BV8a and 20.143±0.431 ka in
BV9b (Supplementary Data 1, 2, 3). Only 20% could be classified
to a genus, and most were observed without clear phylogenetic
resolution.

The microbial taxa found in the Boggs Valley subglacial calcites
are typical of glaciers, ice, subglacial environments26, Antarctic
lake sediments and springs25,27, deep-sea sediments and deep-sea
thermal vents28,29. Some pertain to endolithic communities30,31

and include the phyla Chloroflexi (40–32%), Actinobacteria
(22–25%), Cyanobacteria (18–19%) and Proteobacteria (13–17%).
Others are associated to communities with known critical
functions for silicate bedrock dissolution, including sulfur
reducing and organic matter-oxidising bacteria, while others are
known to promote calcite precipitation, including autotrophic,
heterotrophic and phototrophic taxa32–34 (Fig. 3a). Thermophilic
microbial species accounted for 47 and 40% of the DNA sequ-
ences determined in clean columnar Cs35–37 (Fig. 3b). These
thermophilic taxa belong to large phylogenetic groups of micro-
organisms that thrive at temperatures above 41 �C (refs 38, 39). In
contrast to the rich microbial association extracted from Cs crusts
(BV8a, BV9b), a glacially deformed, Dm sample (BV11) yielded
none of the taxa typical of thermophilic environments. The LGM
basal meltwater community in Boggs Valley reconstructed from
ancient DNA shares similarities to known Antarctic subglacial
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environments5,26, but maintains a unique signal that is indicative
of LGM hydrothermal activity in the area.

Discussion
Subglacial calcite growth in Boggs Valley occurred because
wet-based subglacial conditions persisted from 26.951±0.824 to
17.054±0.332 ka (Supplementary Table 1), coinciding with the
duration of the LGM as recorded in EPICA Dome C (EDC),
Talos Dome (TALDICE) and EPICA Dronning Maud Land
(EDML) temperature records40 (Fig. 4).

For basal meltwater production to be sustained in a polar
glacier during glacial maxima, the ice must have been thick
enough to limit dispersion of geothermal heat flux to the
atmosphere. The glacier thickness (H) necessary to sustain basal
temperature (Tb) conducive to wet-based conditions during the
LGM was modelled by using a thermal conductivity of ice (Kice)
of 2.4 W m� 1 K� 1, a mean annual air temperature (Ts) of
� 29.4 �C, 9.5 �C (ref. 41) below the present temperature of
� 19.9 �C (ref. 42) and a geothermal heat flux (G) of
120.9 mW m� 2 inferred from magnetic data10 or 75 mW m� 2

hypothesized from modelling12:

Tb ¼ Tsþ
GH
Kice

� �
þ 8:7�10� 4H
� �

ð1Þ

Considering the uncertainties in the ice-thickness calculation
in equation (1), the LGM glacier that occupied Boggs Valley had
to be 580–900 m thick to maintain steady basal melting (Fig. 5).
This is consistent with the 800 m estimated for the area obtained
from a three-dimensional LGM ice-sheet simulation43. This
projection suggests that a nominal ice thickness of 750 m was
necessary to ensure a hydrous subglacial environment in Boggs
Valley (Fig. 5) throughout the LGM.

A high density of measured ages in Boggs Valley calcites (peaks
in the age distribution in Fig. 4b) likely coincides with periods
when steady basal melting conditions favoured the growth of Cs
throughout the LGM (fabric distribution in Fig. 4b). Cs is known
to be the product of incomplete re-freezing of basal meltwater
when persistent, slow flow fills a subglacial interconnected pore
system17. In contrast, when measured ages are scarce, it is
plausible that Cs growth was interrupted by dissolution, erosion
and injection of sediment-laden meltwaters sourced from
up-glacier (Supplementary Fig. 1).

A decrease in age distribution occurs at ca. 25.1±0.5 and
persists until ca. 22.5±0.6 ka, which coincides with the ages of
isopachous cements Cc. Therefore, the process responsible for the
subglacial transport and deposition of coarse grained, rounded
sediment and particulates to the subglacial environment of Boggs
Valley had declined at ca. 23 ka. By considering a cluster
of Dm dates around 23.5 ka (23.769±0.296, 23.524±0.446,
23.135±0.537 ka, Supplementary Table 1), it is reasonable to
surmise that from 25.5 to 23.5 ka (Fig. 4b), when EDML and EDC
record a decrease in dust flux, episodes of discharge of sediment-
laden subglacial meltwater with high enough energy to reach the
ice margin occurred7. Only high-energy current discharged from
a subglacial source, such as a lake could have transported pebble-
sized sediment sourced from up-glacier into Boggs Valley
(Supplementary Fig. 1). Under cold conditions of the LGM in
Antarctica, surface melting was unlikely to reach the bedrock
through crevasses and sustain subglacial flow7. The ancient DNA
data suggested that thermophilic microbial taxa were mostly
associated with calcites formed during or soon after discharge.
This, and the high level of sulfate and fluorine in calcites in layers
whose ages cluster around 23.5 ka make plausible the notion that
a hydrothermally influenced subglacial lake, similar to Lake
Vostok29,44, discharged into Boggs Valley at, or just before 23.5

ka (Fig. 4b). In addition, the 13C depletion recorded in the
subglacial calcites indicates that the reservoir was characterized by
organic-matter oxidation, or re-mineralization, that resulted in an
isotopically light, dissolved inorganic carbon signature. In
Antarctica, subglacial lakes show 13C depletion45, so that it is
likely that a subglacial meltwater reservoir was drained following
breaching of a hydrological barrier. Pore waters, sustained by
steady melting of ice, were flushed through when bursts of
discharge waters were injected into the basal interconnected pore
system of Boggs Valley.

Transantarctic Mountain (TAM) volcanic activity, from Mount
Melbourne to Mount Erebus, to the Pleiades (Fig. 1), is
characterized by the release of fluorine, sulfur and Fe-rich
fluids46,47. Critically, the LGM fluoride record in the EDC ice core
has been tentatively ascribed to subglacial eruptions in the
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TAM region48. Since geothermal heating in NVL is higher
(B20 mW m� 2) than in the Lake Vostok region49, it is
reasonable to hypothesize that a similar deep subglacial lake
existed up-glacier from Boggs Valley. Meltwaters released by
drainage likely reached the ice-sheet margin by flowing along the
axis of the Rennick outlet glacier9,50,51.

We used Icelandic examples52 to estimate the volume of ice
melt produced by subglacial volcanism for a range of areal extents
based on an ice overburden of B750 m (Supplementary Fig. 5).
The calculated subglacial ice melt was of sufficient volume to
offset the overburden pressure exerted by the ice, thereby
overcoming a glacio-hydrostatic barrier and generating drainage
with adequate energy to keep subglacial conduits open for
long periods of time9,50 and transport pebble-sized particles
(Supplementary Fig. 1c)

At ca. 17.1±0.3 ka (Fig. 4b) calcite ceased to form because ice-
thickness reduction caused dispersion of geothermal heat and a
change to entirely cold-based conditions. This age agrees with an
early onset of the deglaciation (ca. 18 ka) documented in areas of
strong ice streaming in East Antarctica53,54. As a result, the
connection between hydrothermally influenced subglacial lakes at
the interior of the ice sheet and the margin was severed at the end
of the LGM in this sector of NVL.

Under today’s global warming scenario, meltwaters discharged
from supraglacial environments interacting with subglacial
sediments and bedrock, deliver dissolved Fe to the ocean7,55.
In contrast, at peak glacial conditions it was a combination of
geothermal heat flux, thick ice and volcanism that sustained
subglacial melting. In Boggs Valley, a wet-based subglacial
environment hosted organisms using autotrophic and hetero-
trophic metabolic pathways capable of releasing divalent Fe
(Fe2þ ) from the dissolution of silicates and pyrite oxidation56–58.
This Fe2þ may have formed complexes with the natural organic
matter in the basal meltwater or remained as dissolved species
(oo1 nm), both of which could have been adsorbed onto reactive
calcite surfaces. Thus, the amount of Fe2þ released can be
estimated from the concentration of Fe incorporated in the clean
sparite crystals. Using a conservative concentration of 100 p.p.m.,
the Fe2þ dissolved in the LGM basal waters was calculated by
extrapolating the experimental distribution coefficient between
solid calcite and Fe in solution (DFe

2þ )59 at an inferred basal
temperature of just above freezing (B2 �C). The value of
DFe

2þ is 3.6 for precipitation rates of 1.8–6.6 mmol m� 2 h� 1

estimated for Cs (whose growth rate is 0.57 mm per year,
between 24.634±0.221 and 20.153±0.431 ka in BVa2 and
2.16 mm per year between 20.153 and 17.272±0.226 ka in BV9b).
Assuming that the LGM subglacial waters had a Ca2þ

concentration of 0.5 mmol l� 1 (ref. 60), the divalent Fe
concentration would have been B0.32 mmol l� 1, a value similar
to that reported for Antarctic basal ice61 and measured in outlet
glacier meltwater in Greenland55.

The combination of thick ice, geothermal heat flux, volcanism
and microbial metabolism very likely resulted in the delivery of
bioavailable Fe to the Southern Ocean, and may ultimately have
contributed to driving changes in the global C cycle during the
LGM. Our new data enables an alternative interpretation of the
discrepancies observed in peak Fe flux recorded by ocean
sediments at site ODP1090 at ca. 23 ka that are not paralleled
by an increase in dust flux recorded by ice cores (Fig. 4). In
addition to soluble and complexed Fe, the basal hydrological
system transported Fe as fine-grained material, including the
mineral ferrihydrite, which could have provided a source of
potentially bioavailable Fe that reached the productive iceberg-
associated sediments8. The importance of the new data from
Boggs Valley is that they corroborate the hypothesis that
subglacial Fe evolved from bio-weathering and was delivered to
the ocean by volcanically induced discharge processes in the
LGM. Our first finding of thermophilic microorganisms in a well
dated archive of subglacial environments and processes support
the concept that volcanism had a significant role in sustaining
both subglacial hydrology and subglacial microbial communities
at peak glacial conditions.

Boggs Valley calcites are not a unique record of volcanic
processes in the TAM region. Calcite precipitates found
elsewhere have been interpreted as the product of subglacial
hydrothermalism62, and subglacial eruptions are registered in the
sulfate and fluorine records of TALDICE and EDC ice cores46.
The TAM rift has high levels of eruptive activity related to
upwelling and lateral flow of the upper mantle from the Ross Sea
Rift16. It is also noteworthy that mantle upwelling has been
recently associated with waxing and waning of the ice sheets,
thereby providing a link between magmatism and glacial cycles63.
Further research on similar calcites is needed to test the
quite plausible hypothesis that Antarctic volcanism, by
changing subglacial meltwater discharge of micronutrients,
could potentially influence global climate.
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Methods
Sampling. Samples of brown-reddish subglacial calcite crusts were collected from
the bedrock, consisting of glacially polished amphibolite, where these were not
covered by snow, within a total area of 100 m2 (location shown in Fig. 1b) in the
course of a survey targeted to obtain terrestrial cosmogenic nuclide exposure ages
on adjacent moraines. The morphology of the crust was typical of similar deposits
occurring on exposed carbonate and non-carbonate bedrocks of Alpine glaciers.
Thus, the crusts were immediately recognized as potentially bearing information
on subglacial processes in Antarctica.

For the present study, the most compact samples characterized by columnar Cs
layers (Supplementary Table 1) were selected for dating, chemical and microbial
analyses, with the reasonable assumption that the Cs fabrics are compact enough to
ensure closed system behaviour relative to trace elements and isotope mobilization.
Therefore, all environmental proxy data and ages are likely to reflect the original
depositional environment, and are unaffected by post-depositional alteration or
contamination following de-glaciation. In addition, dating, chemical and ancient
DNA analyses were carried out on sample BV11 exclusively consisting of greenish
microsparite matrix embedding angular clasts. Two samples, BV9a1 and BV9a2c
consisted of clasts cemented by isopachous calcite. The cleanest isopachous
cements (Cc in Supplementary Table 1), which are as thin as 0.1 mm, were sampled
by microdrilling following assessment of their primary nature under the optical
microscope. Similarly, micrite veils coating clastic grains (Cg in Supplementary
Table 1), which resemble a microbial structure were also microdrilled to test if their
age was consistent with a subglacial genesis.

Microscopy and mineralogy. Thin sections of subglacial calcites were observed
by optical and epifluorescence microscopy. One millimetre thick wafers of
age-equivalent subglacial crusts were polished and ultrasonically cleaned. Imaging
at nm-scale resolution on uncoated surfaces was carried out by field emission
scanning electron microscopy with a ZEISS Sigma Variable Pressure field emission
scanning electron microscopy equipped with Bruker EDS system in backscattered
electron mode at the Electron Microscope and X-ray unit of the University of
Newcastle, Australia. Semi-quantitative chemical microanalyses were carried
out in situ on spot areas of ca. 500 nm diameter and the normalized weight %
calculated with the Quantax software (Bruker nano). Epifluorescence was excited
by light at 250–350 nm wavelength and the most common emission band was in
the 450–550 nm.

Powder X-ray diffraction on clean calcite and Dm was carried out on a
PANalytical h-h diffractometer equipped with a Cu X-ray tube operating at 40 kV
and 40 mA. Scans were performed over the range 3–80� with an integrated step size
of 0.017� and a counting time of 100 s per step. Identification of minerals, and cell
parameter determination were performed using High Score Plus and the ICSD
database (PANalytical).

Dating. U/Th dating was performed on eight Boggs Valley subglacial samples
by multi-collector ICP-MS at the School of Earth Sciences, the University of
Melbourne, following the analytical method described in Supplementary Table 1.
From each sample, powders were drilled from top to bottom in Cs and Dm layers,
with density of sub-samples depending on the thickness of the material. Ages were
obtained for 50 sub-samples, 7 of which showing 2s error 4±1,000 years
(highlighted in red, Supplementary Table 1). In these sub-samples, uncertainties
are likely due to detrital Th contamination. In most samples, Dm layers are thinner
than 0.1 mm (for example in BV9a2, Supplementary Fig. 1A) and the age had to be
reconstructed from that of clean Cs layer below and above. The age of mixed
Cs and Dm (CsþDm in Supplementary Table 1) in BV9b, is constrained by a
pre-quem age of 26.307±0.204 ka, and a date for the top Dm precipitated on
partially dissolved Cs of 23.524±0.446 ka. It is reasonable to reconstruct, on the
basis of correlation with dated CsþDm in BV9a2a, an age of ca. 25.5 ka
(25.135±0.537 ka) for the commencement of CsþDm precipitation in BV9b
(Supplementary Fig. 1A). Reconstruction of the timing of deposition of sediments
was performed by considering that the ages obtained for the Cc (Supplementary
Table 1) pre-date the formation of the overlying Cc layer in BVa2c (see
Supplementary Fig. 1), but post-date the deposition of the clasts. Given that Cc is as
old as 22.528±0.661 ka it is reasonable to infer that transport was coeval with the
deposition of Dm in BV9b and BV9a2a and, likely, with the
whole-CsþDm layer.

The type of age model used to correlate samples is, thus, based on stratigraphic
principles, whereby similar, genetically related facies bounded by erosion or
non-depositional surfaces (unconformities) or correlative conformities
(continuously growing columnar Cs). This implies that the stratigraphy of Boggs
Valley subglacial calcites reflects accommodation space available on the substrate
(or between substrate and ice) and Cc (þ Dm in BV9a2a and BV9b) formed on
topographic highs relative to the lows were sedimentation of clast occurred.

Geochemistry. Micro X-ray fluorescence (XRF) mapping was carried out at
beamline ID21 at the European Synchrotron Radiation Facility (Grenoble, France).
Double-polished 300 mm thick wafers were ultrasonically cleaned and loaded in the
sample chamber operating at a pressure of 10� 5 mbar. Maps were acquired by
raster scanning with a step of 2 mm in both directions. XRF was stimulated with a

monochromatic beam and was collected in the horizontal plane, using a large solid
state detector. This geometry, together with the linear polarization of the
incident X-ray beam and the vacuum conditions, minimize background signals
from elastic and inelastic scattering. The micro-XRF mapping was carried out in an
area of 20� 5 mm to include all microstratigraphic components identified by
microscopy. Excitation energy was set at 7.5 keV and 2.6 keV to maximize the XRF
yield of the elements of interest and avoid the excitation of Ca, which would easily
saturate the XRF detector. XRF spectra were batch-fitted using the PyMca software
package.

Micro X-ray Absorption Near Edge Structure (mXANES) investigation was
carried out by tuning the exciting energy around the S absorption K-edge (from
2.45 to 2.55 keV) and the Fe K-edge (from 7.1 to 7.2 keV) utilizing a Si(220)
double-crystal monochromator and an energy resolution of 0.25 eV (ref. 64).
Calibration with internal standards allowed comparison with reference spectra.

For quantitative geochemical analysis we used a Varian 810 quadrupole
ICP-MS equipped with helium excimer laser system (School of Earth Sciences, the
University of Melbourne). The helium excimer produces an ultraviolet light beam
(24 mm� 8 mm) with wavelength of 193 nm and pulse length of 24 ns. Typical
scan speed is 20 mm s� 1. Background measurement and analyses of the NIST612
standard were carried out periodically for drift corrections. Data were calibrated to
the NIST612 standard and converted to absolute concentrations using 43Ca as
internal standard. Background was subtracted and baseline drift corrected by linear
interpolation of the standard counts. Because of mass interferences, S and P were
quantified by EDS using an internal standard for the regions where these elements
were detected by synchrotron-radiation-based micro-XRF.

Stable-isotope analyses were conducted using a GV Instruments GV2003
continuous-flow isotope ratio mass spectrometer at The University of Newcastle,
Australia. Samples of B0.75 mg were acidified in evacuated septum-capped vials
with 0.05 ml of 105% phosphoric acid. The CO2 evolved from the reaction was
admitted into the ion-source chamber under vacuum in an ultra-high-purity
helium gas stream. Sample isotopic ratios were standardized to the VPDB scale
using an in-house standard of Carrara Marble (NEW1) and two international
reference materials, NBS19 and NBS18. Analytical reproducibility for C and O
was better than 0.05 and 0.10%, respectively.

Ancient DNA technique. Bacterial amplicon sequencing was undertaken on
BV8a, BV9b and BV11a, representative of clear sparite, a sequence of sparite and
Dm, and Dm, respectively (Supplementary Fig. 6). Contaminating DNA on the
outer surface of the samples was removed by removing B2 mm of the outer surface
with a Dremel tool, exposing each side to ultraviolet irradiation for 15 min, and
soaking in 3% hypochlorite solution, as previously described65. DNA was then
extracted from the decontaminated microsparite using a modified silica-based
protocol developed for low biomass extractions in an ultra-clean, specialized
ancient DNA laboratory (The Australian Centre for Ancient DNA at The
University of Adelaide)66. Sample controls (extraction blank controls) were also
processed simultaneously to monitor laboratory and reagent contamination67.
The 16S ribosomal RNA (rRNA) encoding gene regions were amplified using
polymerase chain reaction68,69. To account for contamination introduced into
these low biomass samples via laboratory environment and reagents, sequences
identified in extraction blank controls were filtered from the data set67,70. 16S
rRNA libraries were created as previously described69 with 38 cycles performed to
achieve amplification of limited ancient DNA fragments65. 16S rRNA amplicon
libraries were then pooled and sequenced on an Illumina MiSeq, generating
B500,000 reads between the three calcite and one extraction blank control sample.
Sequences were then de-multiplexed using CASAVA, trimmed and quality filtered
using CutAdapt, and imported into QIIME for downstream analyses. Bacterial
species were determined by aligning operational taxonomic units selected by
clustering at 97% similarity using UClust to the Greengenes database.

Data availability. Our DNA data are publically available on the QIITA database:
study ID 10766: ‘The Influence of Antarctic Subglacial volcanism on the global Fe
cycle during the Last Glacial Maximum’. DNA sample list is supplied in
Supplementary Data 1. Processed data are available as Supplementary Data 2 and 3
(OTU tables in BIOM format). Raw data files have also been uploaded to the NCBI
SRA database as BioProject ID: PRJNA386567; BioSample IDs: SAMN07139230,
SAMN07139231. All other relevant data are available upon request from the
authors.
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34. Bižić-Ionescu, M., Amann, R. & Grossart, H.-P. Massive regime shifts and high
activity of heterotrophic bacteria in an ice-covered lake. PloS ONE 9, e113611
(2014).

35. Crits-Christoph, A. et al. Colonization patterns of soil microbial communities
in the Atacama Desert. Microbiome 1, 28 (2013).

36. Foesel, B. U., Geppert, A., Rohde, M. & Overmann, J. Parviterribacter
kavangonensis and Parviterribacter multiflagellatus a novel genus and two
novel species within the order Solirubrobacterales and emended description of
the classes Thermoleophilia and Rubrobacteria and its orders and families. Int.
J. Syst. Evol. Microbiol. 66, 652–665 (2016).

37. King, C. & King, G. Thermomicrobium carboxidum sp. nov., and Thermo-
rudis peleae gen. nov., sp. nov., carbon monoxide-oxidizing bacteria isolated
from geothermally heated biofilms. Int. J. Syst. Evol. Microbiol. 64, 2586–2592
(2014).

38. Sylvan, J. B., Toner, B. M. & Edwards, K. J. Life and death of deep-sea vents:
bacterial diversity and ecosystem succession on inactive hydrothermal sulfides.
MBio 3, e00279–00211 (2012).

39. Houghton, J. et al. Thiosulfate oxidation by Thiomicrospira thermophila:
metabolic flexibility in response to ambient geochemistry. Environ. Microbiol.
18, 3057–3072 (2016).

40. Barbante, C. et al. One-to-one coupling of glacial climate variability in
Greenland and Antarctica. Nature 444, 195–198 (2006).

41. Stenni, B. et al. The deuterium excess records of EPICA Dome C and Dronning
Maud Land ice cores (East Antarctica). Quat. Sci. Rev. 29, 146–159 (2010).

42. Comiso, J. C. Variability and trends in Antarctic surface temperatures from
in situ and satellite infrared measurements. J. Clim. 13, 1674–1696 (2000).

43. Golledge, N. R. et al. Glaciology and geological signature of the Last Glacial
Maximum Antarctic ice sheet. Quat. Sci. Rev. 78, 225–247 (2013).

44. Schiermeier, Q. Claims of Lake Vostok fish get frosty response. Nat. News
doi:10.1038/nature.2013.13364 (2013).

45. Neumann, K., Lyons, W. B., Priscu, J. C., Desmarais, D. J. & Welch, K. A.
The carbon isotopic composition of dissolved inorganic carbon in perennially
ice-covered Antarctic lakes: searching for a biogenic signature. Ann. Glaciol. 39,
518–524 (2004).

46. Udisti, R. et al. Sea-spray and marine biogenic seasonal contribution to snow
composition at Terra Nova Bay, Antarctica. Ann. Glaciol. 29, 77–83 (1999).

47. Keys, J. H. & Williams, K. Origin of crystalline, cold desert salts in the McMurdo
region, Antarctica. Geochim. Cosmochim. Acta 45, 2299–2309 (1981).

48. Udisti, R. et al. Atmosphere–snow interaction by a comparison between aerosol
and uppermost snow-layers composition at Dome C, East Antarctica. Ann.
Glaciol. 39, 53–61 (2004).

49. Siegert, M. J. Antarctic subglacial lakes. Earth Sci. Rev. 50, 29–50 (2000).
50. Bell, R. E. The role of subglacial water in ice-sheet mass balance. Nat. Geosci. 1,

297–304 (2008).
51. Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge

connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).
52. Gudmundsson, M. T., Sigmundsson, F., Björnsson, H. & Högnadóttir, T.
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